Hôm nay,  

Giải Đáp Cho Những Câu Hỏi Lớn Về AI

11/8/202400:00:00(View: 1300)

Robot photo
Liệu AI sẽ giúp chúng ta có cuộc sống tốt đẹp hơn, hay sẽ làm trầm trọng thêm những vấn đề đang tồn đọng trong xã hội? Các chuyên gia cho rằng câu trả lời phụ thuộc vào cách chúng ta đào tạo và sử dụng AI, đồng thời nhấn mạnh rằng chúng ta cần nghiêm túc xem xét lại vấn đề này. (Nguồn: pixabay.com)


Liệu chúng ta có thể tin vào những gì mình thấy không?
 
Fred Ritchin đã nghiên cứu về nhiếp ảnh suốt gần nửa thế kỷ qua. Ông bắt đầu nhận thấy sự thay đổi trong lĩnh vực này vào năm 1982, khi còn làm biên tập viên hình ảnh cho tạp chí New York Times Magazine.
 
Năm 1984, Ritchin viết một bài báo có tựa đề “Những Chiêu Trò Mới Của Nhiếp Ảnh,” trong đó bàn về những tác động của công nghệ chỉnh sửa kỹ thuật số đối với hình thời sự (photojournalism) đương thời. Trong những thập niên sau đó, Ritchin đã chứng kiến quá trình chuyển mình từ giai đoạn chỉnh sửa hình ảnh kỹ thuật số sơ khai sang thời kỳ sử dụng công nghệ hình ảnh do trí tuệ nhân tạo (AI) tạo ra, cả người dùng nghiệp dư lẫn chuyên nghiệp đều có thể tạo ra những hình ảnh chân thực chỉ trong tích tắc.
 
Với sự bùng nổ của hình ảnh AI, Ritchin cho rằng chúng ta cần tìm cách xác định tính xác thực của những gì mình thấy. Ritchin liên kết các cuộc tranh luận hiện đại về AI với những các tranh cãi từ trước thời Photoshop về việc các nhà báo có nên công khai khi họ đã chỉnh sửa ảnh hay không.
 
Một thí dụ nổi tiếng là trường hợp của tạp chí National Geographic, từng bị chỉ trích vì đã chỉnh sửa ảnh để di chuyển vị trí các kim tự tháp ở Giza trên trang bìa của số báo tháng 2/1982. Ngày nay, các nhiếp ảnh gia của National Geographic bắt buộc phải chụp ảnh định dạng RAW, và tạp chí này cũng có chính sách rất nghiêm ngặt đối với việc chỉnh sửa ảnh.
 
Theo Ritchin, các biên tập viên, nhà xuất bản và phóng viên ảnh cần đặt ra các tiêu chuẩn rõ ràng để đối phó với những vấn đề phát sinh từ AI. Nhiều công ty truyền thông và các hãng camera đã phát triển công nghệ nhúng siêu dữ liệu (metadata) và mã hóa dấu vết (cryptographic) trong ảnh để xác định thời điểm chụp và liệu ảnh đã bị chỉnh sửa hay chưa. Ritchin không kêu gọi loại bỏ hẳn AI, nhưng ông mong muốn nhiếp ảnh có thể tìm lại sức mạnh mà lĩnh vực này từng có.
 
Máy móc có sai sót thì chúng ta có nên ‘thông cảm bỏ qua’ không?
 
Nghiên cứu gần đây chỉ ra rằng một chatbot AI phổ biến được nhiều người tin dùng nhất lại cung cấp thông tin sai bét nhè về lập trình máy tính. Đây là một thí dụ tiêu biểu cho vấn đề mà AI đang đối mặt: các thuật toán phát triển liên tục có thể gặp hiện tượng “ảo giác” (hallucinate), tức là khi AI đưa ra một câu trả lời nghe có vẻ hợp lý nhưng thực tế lại hoàn toàn bịa đặt.
 
Điều này xảy ra vì các ứng dụng AI tổng quát (generative AI), như các mô hình ngôn ngữ lớn, hoạt động như một chương trình dự đoán. Khi người dùng đặt một câu hỏi, AI sẽ tìm kiếm trong cơ sở kiến thức đang có để lấy ra những thông tin liên quan. Sau đó, dựa trên những gì tìm được, AI sẽ dự đoán một tập hợp các từ để tạo thành câu trả lời phù hợp. Mỗi lần dự đoán một tập từ, AI sẽ tiếp tục dự đoán các từ tiếp theo dựa trên những gì đã học, và quá trình này cứ lặp đi lặp lại như vậy.
 
Tuy nhiên, theo giáo sư Rayid Ghani từ Đại học Carnegie Mellon, vì AI chỉ dựa trên các dự đoán mang tính xác suất chứ không thực sự “thấu hiểu” nội dung, nên đôi khi nó tạo ra những câu trả lời sai lầm nhưng vẫn nghe có vẻ hợp lý. Các mô hình AI thường được đào tạo từ lượng dữ liệu khổng lồ trên mạng, nhưng không ai kiểm tra độ chính xác của những dữ liệu này, và AI không biết phân biệt nguồn nào đáng tin cậy, nguồn nào thì không.
 
Ghani giải thích rằng chúng ta dễ dàng tha thứ cho lỗi của con người vì hiểu rằng ai cũng có thể mắc sai lầm. Nhưng với máy móc, chúng ta lại mong đợi sự chính xác tuyệt đối. Điều này khiến chúng ta khó tha thứ khi AI phạm lỗi. Tuy nhiên, thông cảm có thể sẽ rất hữu ích để giúp phát hiện và sửa lỗi cho AI. Vì AI là sản phẩm do con người tạo ra, nên những lỗi của AI thường phản ánh những sai sót trong dữ liệu mà con người cung cấp. Nếu chúng ta không chỉ kiểm tra các quy trình của AI mà còn xem xét cả những vấn đề trong dữ liệu đầu vào, chúng ta vừa có thể cải thiện AI, vừa có thể giải quyết các thiên kiến trong xã hội và văn hóa.
 
Tác động môi trường của AI là gì?
 
AI đang tiêu tốn một lượng lớn năng lượng và nước. Shaolei Ren, giảng sư kỹ thuật điện và máy tính tại Đại học UC Riverside, giải thích rằng các công cụ AI như ChatGPT cần rất nhiều năng lượng để hoạt động, và lượng năng lượng đó tạo ra nhiệt. Để làm mát các trung tâm dữ liệu – nơi lưu trữ các hệ thống AI và hỗ trợ tính toán cho chúng – cần sử dụng một lượng nước rất lớn. Khi các trung tâm dữ liệu nóng lên, lượng nước bốc hơi không thể tái sử dụng, gây lãng phí tài nguyên. Ren nhấn mạnh rằng chúng ta cần hiểu rõ tác động môi trường của AI khi sử dụng những công cụ như ChatGPT.
 
Ngay cả trước khi có vô vàn công cụ AI như hiện nay, nhu cầu về nước và năng lượng của các trung tâm dữ liệu cũng đã tăng đều đặn. Năm 2022, theo báo cáo của Google, các trung tâm dữ liệu của họ đã tiêu thụ hơn 5 tỷ gallon nước, tăng 20% so với năm 2021. Microsoft cũng báo cáo mức tăng 34% về lượng nước sử dụng trong cùng năm đó. Và AI chỉ đang làm tình hình tồi tệ thêm. Cơ quan Năng lượng Quốc tế dự báo rằng đến năm 2026, lượng điện tiêu thụ tại các trung tâm dữ liệu sẽ tăng gấp đôi so với năm 2022.
 
Trong khi Hoa Kỳ mới bắt đầu đánh giá các tác động môi trường của trung tâm dữ liệu, Liên Âu đã có bước đi tiến bộ hơn. Tháng 3 vừa qua, Ủy ban Năng lượng của EU đã ban hành một quy định nhằm tăng cường tính minh bạch cho các nhà vận hành trung tâm dữ liệu và giảm phụ thuộc vào nhiên liệu hóa thạch cũng như giảm lãng phí tài nguyên.
 
Ren cho biết: “Tôi giải thích cho con theo cách dễ hình dung rằng khi con đặt một câu hỏi cho ChatGPT, sẽ tiêu tốn năng lượng tương đương với việc bật đèn LED bốn watt trong một giờ. Một cuộc trò chuyện với AI trong khoảng 10-50 câu hỏi có thể tiêu thụ 500 ml nước, tương đương một chai nước uống bình thường.
 
AI có thể làm trầm trọng thêm các vấn đề đã tồn tại từ trước không?
 
Theo nhà nghiên cứu Nyalleng Moorosi từ Distributed AI Research Institute, trong quá trình học hỏi từ toàn bộ dữ liệu mà chúng ta cung cấp, AI có thể ‘học’ luôn những bất công và định kiến đã tồn tại từ trước. Thực tế, AI chỉ là tấm gương phản ánh những vấn đề như nạn phân biệt chủng tộc, phân biệt phái tính, và những bất công khác trong xã hội. Nguyên nhân chủ yếu là do thiếu sự đa dạng trong đội ngũ phát triển AI. Những người này thường phụ thuộc quá nhiều vào các tập dữ liệu ưu tiên các quan điểm của phương Tây về điều gì là thông tin có giá trị và điều gì không.
 
Phần lớn thế giới hiện nay đã từng trải qua cảm giác bị áp bức, một phần do hậu quả của chế độ thực dân, khi các hệ thống và tư tưởng của các quốc gia giàu có áp đặt lên các quốc gia khác. Moorosi tin rằng AI có nguy cơ tái tạo những hệ thống này: ưu tiên những quan điểm và mục tiêu của những người nắm quyền, bỏ qua hoặc làm ngơ trước những tri thức và giá trị văn hóa của các cộng đồng thiểu số.
 
Nhiều đội nhóm phát triển AI ở các công ty công nghệ thường có những “điểm mù” – tức là những thiếu sót trong việc hiểu và tiếp xúc đa dạng văn hóa, ngôn ngữ. Họ không thể tránh khỏi việc vô tình mang luôn những mặt hạn chế này vào các công cụ AI của mình.
 
Để cải thiện tình hình, Moorosi tin rằng cần phải “dân chủ hóa AI” – tức là AI cần phải được phát triển ở cấp độ địa phương, nơi những nhà phát triển và kỹ sư có thể xây dựng công cụ phù hợp với cộng đồng của mình. Thí dụ như Lelapa AI ở Nam Phi, đã ra mắt mô hình học ngôn ngữ phục vụ những người nói tiếng Swahili, Yoruba, Xhosa, Hausa, và Zulu.
 
Moorosi cũng nhấn mạnh rằng: “Chúng ta cần phải đặt ra câu hỏi về quyền lực. Không thể mong đợi những người làm việc cho Google hay OpenAI thấu hiểu hết mọi thứ, về tất cả mọi người. Silicon Valley không thể đại diện cho tám tỷ người trên thế giới. Cách tốt nhất là mỗi cộng đồng tự xây dựng các hệ thống AI cho riêng mình.
 
Theo bà, “một thế giới lý tưởng là nơi mà AI sẽ trở thành công cụ phổ biến và gần gũi, giúp mọi người tự mình đối mặt và giải quyết các vấn đề cá nhân cho đến những thách thức của cộng đồng, thay vì chỉ nằm trong tay những tập đoàn công nghệ lớn.
 
VB biên dịch
 
Nguồn: “Your biggest AI questions, answered” được đăng trên trang nationalgeographic.com.
 

Send comment
Vui lòng nhập tiếng Việt có dấu.Cách gõ tiếng Việt có dấu ==> https://youtu.be/ngEjjyOByH4
Your Name
Your email address
)
(WASHINGTON, ngày 23 tháng 7, Reuters) – Kilmar Abrego, một di dân Salvador bị trục xuất sai và trở thành “nạn nhân tiêu biểu” của chính sách di trú hà khắc dưới thời Tổng thống Donald Trump, vừa giành được hai chiến thắng lớn tại tòa án Hoa Kỳ hôm thứ Tư. Dù vậy, anh vẫn bị giam với cáo buộc có liên quan đến một đường dây buôn người qua biên giới.
(WASHINGTON, ngày 23 tháng 7, Reuters) – Columbia University hôm Thứ Tư cho biết đạt được thỏa thuận với chính quyền Tổng thống Donald Trump. Nhà trường sẽ chi trả hơn 200 triệu MK cho chính phủ liên bang khép lại các cuộc điều tra và khôi phục phần lớn khoản tài trợ bị tạm dừng trước đó.
Ông Padilla cho rằng nếu đây là cách chính quyền Trump phản ứng với một TNS Hoa Kỳ- một người chỉ muốn đặt câu hỏi để cố gắng làm sáng tỏ, tìm kiếm sự thật- thì người Mỹ có thể tưởng tượng những gì họ sẽ làm và đang làm với rất nhiều người dân ở khắp nơi trên đất nước.
Lời dịch giả: Bài viết nhan đề "Cần Phải Đi Xa Hơn Hình Thức” đăng trên Liên Hoa Nguyệt San, số 2, năm Mậu Tuất (1958), ký tên Liên Hoa, nói về chuyện xảy ra gần bảy thập niên trước, mà bây giờ chúng ta vẫn có thể gặp nơi này hay nơi kia tại Việt Nam. Liên Hoa Nguyệt San là tiếng nói chính thức của Giáo Hội Tăng Già Trung Phần. Bài này được dịch để hiểu về phong trào chấn hưng Phật giáo thời kỳ đó. Bài viết như sau.
- Thăm dò YouGov: đại đa số dân Mỹ (89% đảng viên Dân chủ và 73% đảng viên Cộng hòa) đòi công bố tất cả tài liệu Epstein. - Trump sẽ đến Scotland cuối tuần này, để lại Nhà Trắng hỗn loạn giữa trùng vây Epstein - Trump vô ý đã tự định vị Trump là "nhà nước ngầm"
(WASHINGTON, ngày 22 tháng 7, Reuters) – Ủy hội an toàn vận tải (National Transportation Safety Board, NTSB) sẽ tiến hành một phiên điều trần kéo dài ba ngày, bắt đầu từ ngày 30 tháng 7, nhằm làm rõ nguyên nhân dẫn đến vụ va chạm giữa một trực thăng của Lục Quân Hoa Kỳ và một phi cơ dân dụng của American Airlines hồi tháng 1.
(Hoa Kỳ, ngày 22 tháng 7, Reuters) – Theo tờ Bloomberg loan tin hôm Thứ Ba, Elon Musk (từng làm cố vấn cấp cao cho Tổng thống Donald Trump) rất có thể sẽ quay trở lại chính trường Hoa Kỳ.
Tối chủ nhật 20-7-2025, tại phòng sinh hoạt của University of The West - Đại học Phật Giáo ở thành phố Rosemead, California, có buổi lễ trao bằng các học viên tốt nghiệp khóa Thiền căn bản và thực nghiệm do Thượng tọa Thích Thiện Trí giảng dạy, với sự tham dự của các học viên và quan khách.
Viện Việt-Học trân trọng giới thiệu và kính mời Quí Giáo-sư, Quí-vị tham dự buổi giới thiệu Tập tài-liệu "Những Tù Khúc Tháng Tư" vào Chủ Nhật ngày 3 tháng Tám, 2025 từ 1:00 PM đến 4:30 PM tại Phòng Sinh hoạt Nhật báo Người Việt.
(WASHINGTON, ngày 21 tháng 7, Reuters) – Hôm thứ Hai, Bộ Tư pháp Hoa Kỳ đã chính thức công bố hơn 240,000 trang tài liệu liên quan đến vụ ám sát mục sư Martin Luther King Jr. – biểu tượng vĩ đại của phong trào dân quyền. Đáng chú ý, trong số tài liệu này có cả những ghi chép từ FBI, hé lộ về chiến dịch theo dõi và bôi nhọ nhắm vào nhà hoạt động từng đoạt giải Nobel Hòa bình.
(LOUISVILLE, Kentucky, ngày 21 tháng 7, Reuters) – Tòa án liên bang tại Louisville hôm Thứ Hai đã tuyên án 33 tháng tù cho cựu cảnh sát viên Brett Hankison vì xâm phạm quyền công dân của cô Breonna Taylor, nạn nhân thiệt mạng trong cuộc bố ráp đầy tai tiếng năm 2020. Điều gây phẫn nộ là trước đó, Bộ Tư Pháp của chính quyền Trump lại đề nghị... chỉ một ngày tù cho ông này!
Theo báo cáo của Human Rights Watch, Americans for Immigrant Justice, và Sanctuary of the South, đăng trên tạp chí The Guardian vào Thứ Hai, ngày 21 tháng 7 năm 2025, tại một nhà giam di trú ở Miami, những người di dân đã bị xiềng tay ra sau lưng và bắt quỳ gối ăn cơm từ dĩa xốp "như chó". Sự việc này chỉ là một trong nhiều ngược đãi xảy ra tại các nhà giam di trú đông đúc ở miền Nam Florida.
Lời dịch giả: Bài viết "Chơn Tâm, Vọng Tâm" được Ni Trưởng Thích Nữ Diệu Không (1905-1997) viết, in trong Tạp chí Liên Hoa, số 9, tháng 9 năm Ất Mùi, tức là năm 1955. Tạp chí Liên Hoa thành lập năm 1955, với Thượng toạ Thích Đôn Hậu trú trì chùa Linh Mụ ở Huế làm chủ nhiệm, Thượng toạ Thích Đức Tâm làm chủ bút, và Ni sư Thích Nữ Diệu Không làm quản lý. Trong bài này, Ni sư ký tên tác giả là Diệu Không.
- Cô Maria Farmer (người đầu tiên tố cáo Jeffrey Epstein) nói đã 2 lần báo cáo FBI về Trump là cộng sự của Epstein, cô và em gái bị Epstein xâm phạm // Luật gia Allison Gill xác nhận: nhiều tin mật cho biết cả ngàn nhân viên FBI phải dò tìm tên Trump trong các hồ sơ Epstein
NHẬN TIN QUA EMAIL
Vui lòng nhập địa chỉ email muốn nhận.